Further UPDATED for Halloween 2021! ChatterPi: a Raspberry Pi Audio Servo Controller for Talking Skulls

Introduction

ChatterPi is a software package that turns a Raspberry Pi into an audio servo controller. In other words, the Pi outputs commands to control a servo based on the volume of the audio input. The input can be either stored audio files (in either mono or stereo .wav format) or from an external source, such as a microphone or line level input. One of the uses is to drive animatronic props, such as a skull or a talking bird.

[This post has been updated to reflect new features added in the latest version]

Background: A Brief History of Talking Skull Control

A common prop that still makes a good impact is a talking object, whether a skull or animal. Some lower cost commercial props use a motor and spring. Another approach is to pre-program a complete sequence to match the vocals, but this is very time consuming and if you want to change the vocals, or even just edit them slightly, you need to reprogram the entire sequence. For that reason, the use of an audio servo controller to drive a servomotor controlling the jaw is a very popular approach. There are several variations. One of the earliest use hardware to detect when the audio exceeded a threshold, and then began moving the jaw towards a fully open position, and when the audio went below the threshold, it would begin closing the jaw. “Scary Terry” Simmons may have been the first to develop an electronic hardware board to do this, and Cowlacious Designs has continued to improve and sell commercial versions, with many added features such as a built in audio player, various triggering options, and the ability to control LEDs as eyes.

Later, someone named Mike (no relation) combined an Arduino with a hardware volume level board to produce the Jawduino. This went from having just 2 levels to 4. The original project just took audio in and controlled the servo, but others added extensions to play stored mp3 files and/or randomly move additional servos (for example, http://batbuddy.org/resources/Halloweenstuff/TalkingSkull.php).

A few years ago, Steve Bjork from Haunt Hackers combined dedicated hardware with a propeller microcontroller to increase the number of levels to almost 256 and also to filter out low and high frequencies that don’t tend to result in jaw movement for spoken sound. The result is the Wee Little Talker. This commercial board also has an onboard mp3 player, can be triggered externally, control LED ‘eyes,” and adds a wide array of features including a voice feedback menu system.

It occurred to me that with current single board computer capabilities and powerful software libraries, it should be possible to incorporate most of the best features of all of these into a single, software-based system running on a Raspberry Pi. The result is ChatterPi. ChatterPi was developed from scratch using the Python language, but ideas for capabilities and features were freely borrowed from previous audio servo controller projects.

Features

ChatterPI is designed to be extremely powerful and flexible without requiring the user to modify any of the code (although advanced users can certainly do that as well). Table 1 compares the current capabilities of ChatterPi with other audio servo controllers. The full range of capabilities and options are described in the Operations subsection.

Table 1. Feature comparison of ChatterPi and other audio servo controllers

Table comparing features of Chatter Pi to other audio servo controllersDemonstration Video

This video shows ChatterPi in action, using both a saved .wav file and microphone input. ChatterPi is controlling the jaw movement. The other skull movements are pre-programmed as a script running on a Pololu Maestro Servo Controller.

Using ChatterPi

This section describes how to set up and install both the hardware and software for using ChatterPi, and for using it.

Hardware

ChatterPi was developed and tested on a Pi 3 A+ and a Pi Zero W. It should work on any Pi. [Originally it ran too slowly on a Pi Zero. A section of code for analyzing audio volume used list processing and a loop. This code was replaced using Numpy, and it’s now fast enough to work on a Pi Zero.]

In addition to the Raspberry Pi, you’ll ]need a USB sound card. This is needed for several reasons. First, if you plan to use an external sound source, you need a way to get audio into your Pi. Second, besides not producing very good sound, the audio out connector may share timing with the Pulse Width Modulation (PWM) code that is needed to drive the servo, creating conflicts.  Use of an inexpensive USB sound card solves both issues. I’ve used one from Adafruit that sells for less than $5 and works well (see https://www.adafruit.com/product/1475). You will need TRS (standard stereo) plugs or an adapter to go into the headphone and microphone jacks on the sound card. The card does not work with a TRRS (combination microphone / stereo headphone plug. You only need a microphone or other external sound source if you wish to use one. Otherwise you can use audio .wav files that you save on the Raspberry Pi. You still need the USB sound card for audio output, however.

That’s all you need for the audio servo controller. Of course, you’ll need a power supply and a servo that you want to control, such as a servo-equipped talking skull, and a passive infrared sensor (PIR) if you want to trigger your prop using one. I used this one (https://www.parallax.com/product/555-28027) from Parallax for development, as I had a spare one already. ChatterPi can also be set to trigger off of a repeating timer or to just turn on and run if you don’t want to use an external sensor.

Figure 1 shows a test bench setup for testing operation. The Red LED is attached to the “TRIGGER_OUT” pin for testing purposes. It can be moved or another LED and resistor attached to the “EYES_PIN” to test that feature. The TRIGGER_OUT pin goes high for 0.5 seconds when the controller is triggered. This can be used to trigger another prop or controller. The EYES_PIN stays high for as long as the audio plays.

Figure 1. A layout for fully testing the ChatterPi

The default PIN selection (which can be changed in the config.ini file) are:

  • Jaw servo: 18
  • PIR input trigger: 23
  • Trigger out: 16
  • Eyes: 25

Figure 2 is a photograph of my test setup. The placement of the wiring on the breadboard is slightly different because I was using it to test a variety of items and also a 3-wire servo controller wire, but the schematic connections are identical.

picture of the test setup

Figure 2. A picture of the test seup used for development

Software Overview

Knowledge or understanding of the software code is not required to operate or use the ChatterPi. The ChatterPi package consists of eight Python 3 modules and one configuration file, as shown in Figure 3.

The configuration file, config.ini, holds all of the user selectable parameters, including which pins are used for which functions, whether the audio source is the microphone input or stored .wav files, which servo control mode should be used, and the servo threshold levels. The config.py program simply reads these values and makes them available in memory during runtime.

The main.py program essentially simply loads the configuration parameters on start-up and calls control.py.  The functions in control.py are not folded into main.py in order to avoid a submodule having to import the main program, which can be problematics.

Most of the processing occurs in the control.py and audio.py modules. The control.py program handles most of the triggering (either a timer, an external trigger such as a PIR, or immediately upon startup, with the method specified in the config.ini file. It uses the GPIO Zero and PiGPIO libraries to monitor the triggering sensor and send output to the output trigger and led pins. PiGPIO is used as the GPIO layer underneath GPIO Zero because it uses DMA control for the Pulse Width Modulation (PWM) control used to the control the servo. Some other libraries, including the default one used by GPIO Zero, use software PWM, which is adequate for tasks such as controlling the brightness of LEDs, but not precise enough for servo control.

Unless the triggering mode is START, the file enters an infinite loop waiting for either a timer to expire (TIMER mode) or the external trigger to be generated (PIR mode). The wait functions meet the requirements and during development, interrupt driven approaches interfered with the audio output, probably due to timing conflicts. In TIMER mode, the timer is restarted after either the audio file finishes playing (if the source is FILES) or after a configurable pre-set time (if the source is MICROPHONE).

When triggered, an event handler is called that, depending upon the settings, sets off the TRIGGER_OUT to trigger another prop or device and turns on the LED eyes or other low power device. Then, if the audio source is FILES, it will call tracks.py, which will select the next .wav file to be played and call audio.py, passing the name of the .wav file to be played. If the audio source is MICROPHONE, audio.py is called without passing a file name.  When the call to audio.py returns, the event handler turns the LED eyes off and returns.

Audio playback, audio analysis, and servo control are all performed by the audio.py module. It defines one class, AUDIO. When the audio.play function is called, it checks on whether the audio source is MICROPHONE or FILES and opens a PyAudio stream appropriately. The stream call runs in a separate thread (this is automatically handled by PyAudio). For each chunk of the input stream, a callback function is called. This callback function is where the audio stream volume is analyzed. The average volume for each chunk is calculated, and the servo is commanded to the appropriate position based on that average volume and the threshold levels that the user has specified in the config file. The wave library is used to read the wave files from storage, and the struct library is used to help deconstruct the wave data to calculate volume and to help to separately analyze the left and right channels for stereo files. The number of levels, the specific thresholds, and whether a bandpass filter is applied before calculating the volume is based on the STYLE setting set by the user in the config file. In addition to the official documentation, I found a slide presentation, Introduction to PyAudio, by Jean Cruypenynck to be very helpful.

If the STYLE is set to 2, then bandpassFilter.py is called to process the digital audio stream and return a modified stream with the bandpass filter applied. The program is very short and simple. It uses two functions from the scipy signal processing library to filter out audio input below 500 Hz and over 2500 Hz. No bandpass filter is applied for STYLE 0 or STYLE 1.

When AMBIENT is set to ON, the ambient playback function in audio.py must also monitor for triggering events (either the timer or sensor), since it needs to interrupt itself and pass control back to control.py when such an event occurs.

The config.ini file can either be edited directly or through a GUI program named controlPanel.py. If the servo or controller subset of parameters are changed during execution, the changes will be reflected the next time a vocal track is triggered. Other changes will not take effect until after ChatterPi is stopped and then restarted.

maxVol.py is a utility program that can be launched from the control panel. It reads and analyzes each wave file in either the vocals or ambient subdirectories and writes them back with the volume levels increased to the maximum possible without clipping or distortion.

Screenshot of Chatter Pi Configuration Control Panel

Screenshot of Chatter Pi Configuration Control Panel

Software Installation, Setup, and Operations.

See the User’s Manual on GitHub for complete instructions. UPDATE: In addition to the source code, there’s now a Pi SD card image file available for download, so you won’t have to do any installations of dependencies or the source code, just install the image on a micro SD card, load it up in your Pi, and your ready to go! See the link in the README file at GitHub – ViennaMike/ChatterPi.

Project Roadmap

This version, 0.9, includes all the features currently planned for ChatterPi. That said, there are two additional features that might be added at a later time (or if anyone cares to add them to this open source project:

  • The ability to use .mp3 files. Simply playing MP3 files on a Raspberry Pi is easy, but they must be processed in real-time as a stream to drive the servo controller.
  • Add drop down pick lists for many of the options in the control panel, and allow lower case values to be entered, auto-correcting to upper case.
  • Add the ability to start and stop the execution of ChatterPi from the control panel.

Wrap Up

The code is open source and published on GitHub (https://github.com/ViennaMike/ChatterPi), and I would welcome anyone who wanted to work on adding any of these advanced features.

To report a bug, make a suggestion, or ask a question, please go to the GitHub repository for the project (https://github.com/ViennaMike/ChatterPi) and open an Issue. To do so, first click on the issues tab, and then use the green “New Issue” button. It’s a good idea to first browse through or search other reported issues to see if someone has already reported the same issue or asked the same question. You can then add comments or suggestions to existing issues, rather than opening a new, duplicative issue.

Pocket Protectors: They Don’t Just Protect Pockets Anymore

Overview

This is just a quickly put together project to have a little fun with social distancing. The project uses an ultrasonic distance sensor, microcontroller, and an RGB LED. The set-up is hot glued to a piece of cardboard, with a battery pack glued to the folded over part that fits in a shirt pocket. If it doesn’t detect anything within 10 feet, the LED is off. If it detects something between 8 and 10 feet, it lights up green, indicating a proper social distance is being maintained. Between 8 and 8 feet, it turns yellow, and if it detects something 6 feet or less away, it flashes red to warn both parties that the proper social distance is not being maintained.

As I mentioned, it’s just for fun, and isn’t very practical, as the sensor reacts to anything in front of it, not just another person. If you really want to get fancy, you could add a camera and face detection, so that the sensor only reacts when a person is in front of you.

Hardware

Social Distancing Sensor

Social Distancing Sensor

RCWL-1601 Ultrasonic Sensor

breadboard closeup

A closeup of the fully wired breadboard and components

  • The system uses an Adafruit RCWL-1601 distance sensor. A nice thing about this sensor is that it can operate at either 3V or 5V. The sensor has four pins: Vin, Ground, Trigger, and Echo. You send a trigger pulse to make a measurement, and then the length of the return pulse on the Echo line tells you the distance.
  • The microcontroller is a Teensy 2.0 that I had lying around.  Pretty much any Arduino compatible board will work.
  • The battery input is run through a 7805 voltage regulator to put our a steady 5V. I should be providing a bit higher voltage as input, but the 6V does seem to work.
  • The RGB LED is one I had around, I don’t remember the model.
pocket protector social distance sensor

The finished Social Distance Sensor

Everything is wired up using a breadboard and then the components hot-glued to the cardboard “pocket protector.”

The Software

The software is very straight-forward. The one minor twist is that I decided that when the sensor detected something 6 feet or less away, it would flash, not just have a steady light. Because it also needed to be continually sensing, I couldn’t use delay() to do this. Normally one uses millis() and continually loop and checking on each pass whether or not enough time had passed to turn the LED on or off. In this case, however, I decided to measure distance four times a second (every 250 milliseconds) and also have the duration of each on or off period also be 250 milliseconds. This makes the already simple code a little simpler, but at the expense of flexibility.

The software can be downloaded from github.

The Test: Don’t Stand So Close to Me

So here’s the result. My wife walked towards me holding the camera. As you can see in the video, the LED is initially off. When she gets within 10 feet, it turns green. It skipped over the narrow range when it’s yellow, but when she gets to 6 feet, it begins to flash red.

A Sliding Puzzle for the PyBadge and PyBadge LC

15 tile sliding puzzle

A plastic  sliding 15 puzzle using numbers

The sliding puzzle has a long history. The first one, a 4×4, 15 tile puzzle, was made in 1890.  A plastic version is shown to the right. The puzzles may have letters forming words or have pictures instead of, or in addition to, numbers. Basically, the tiles are randomized, and then must be returned, by sliding adjacent tiles into the open space one at a time, until the puzzle is returned to the original arrangement.

Many such puzzles have been made, in various sizes. In addition to physical puzzles, video versions can be found on computers and the web.

This is a sliding puzzle game written in #CircuitPython for the @Adafruit #PyBadge and PyBadge LC. It uses pictures for the puzzle, with numbers superimposed to make the puzzles easier to solve. It is configurable so that different images can be used, and it supports both 3×3 (8 tile) and 4×4 (15 tile) puzzles. The tiled graphics approach used in the Adafruit displayio library is ideally suited for a sliding puzzle game.

How it Works

PyBadge showing Santa image

Complete image for Santa puzzle

PyBadge showing scrambled puzzle

PyBadge showing scrambled puzzle

PyBadge showing puzzle solution

PyBadge showing solved puzzle

After initial setup and bookkeeping, the program has an infinite while loop. It roughly follows a state machine pattern with the the states being “intro”, “setup”, “play”, and “solved”.

“intro” displays the puzzle image and then asks the player to select either a 3×3 or 4×4 puzzle. Once a selection is made, the state transitions to “setup.” In this state, the puzzle is scrambled and the scrambled puzzle is displayed. Then the state transitions to “play.” In “play”, the program monitors the up, down, left, and right buttons and moves the tiles accordingly. After each move, the puzzle is checked to see if it is in the solved position. If so, the state transitions to “solved”. Once in the “solved” state, the program displays a “You Won” message, then the full image. It then waits indefinitely until the player either presses START to go back to the “intro” state and play again or turns the badge off. The software is open source and published on GitHub.

A Note on Solvability

If one scrambles the puzzle by starting with the solution and then making random allowed moves the puzzle can always be solved. However, with this approach, it takes many, many such movements to really randomize the puzzle. If, instead, one simply places each tile at random, it turns out that only half of the possible arrangements can be slid back to the solution. Borrowing from what others have done, my code chooses a totally random arrangement, then checks if it is solvable (see the “solvable” function in the code). If not, it randomizes the puzzle again, and repeats this process until a solvable arrangement is found and used. The rules for solvability are:

  1. If the grid width is odd (e.g., 3×3), then the number of inversions in a solvable situation is even.
  2. If the grid width is even (e.g. 4×4), and the blank is on an even row counting from the bottom (second-last, fourth-last etc), then the number of inversions in a solvable situation is odd.
  3. If the grid width is even, and the blank is on an odd row counting from the bottom (last, third-last, fifth-last etc) then the number of inversions in a solvable situation is even.

The plastic slider puzzle shown at the top of this post is not solvable. The blank is on an odd row from the bottom (the first), and there is just one inversion, an odd number.

How to Play the Game

To play, simply load the software onto the PyBadge and turn it on. The display will first show the complete puzzle image, and then will ask you to press the “A” button for a 3×3 (8 tile) puzzle or the “B” button for a 4×4 (15 tile) puzzle. One slot is always empty so that tiles can be moved. Once you have made your selection, you’ll see the puzzle image with the pieces, in the solved state, and then the puzzle will be scrambled for play. The 4×4 puzzle is significantly harder than the 3×3 puzzle and will take more moves to solve, but both are fairly easy with practice.

Use the 4 directional buttons to slide a tile at a time. The goal is to get the tiles arranged in numerical order, left to right and top to bottom, with the empty spot on the bottom right. Once you have done this, you win! After the complete image is displayed upon winning, you can press the START button to play again. Sometimes you need to press the button a couple of times.

Stuck? There are a number of heuristics for humans to use to solve these puzzles (as well as heuristic algorithms for computers). The approach that works for me is documented here.

Changing the Puzzle Images and Creating Your Own

The parameters.py file stores several parameters, including the name of the folder where the puzzle images are stored. To change, for example, from the Santa to the witch puzzle, simply edit the line: puzzle_graphics_folder = “santa” to puzzle_graphics_folder = “witch”. I have provided three sets of images for the puzzle: Santa, a witch, and a Valentine’s Day floral image:

Flowers and "Happy Valentine's Day" text.

 

Santa, sleigh, and reindeer

 

Flying witch in front of moon, with bat.

To make your own puzzles, you need to create 3 bmp images:

  • The full image, to be saved as “full.bmp” in a new folder
  • A tile image for the 3×3 puzzle, to be saves as “tiles3.bmp” in the same folder
  • A tile image for the 4×4 puzzle, to be saved as “tiles4.bmp” in the same folder. .

These images must be exactly the right size in order for the program to work. The full image and 4×4 tile image must be 160 pixels wide by 128 pixels high. The 3×3 itile image must be 159 pixels wide by 126 pixels high.

Start from the full image. To make the 4×4 tile image, black out the pixels on the lower right of the image (x coordinates 121 – 160, y coordinates 96 – 128). You can also put numbers on what will be each tile to make solving the puzzle easier To do this, I use an image editing program to add a layer with a set of grid lines creating a 4×4 grid. Then I blacken out the lower right tile and put numbers in the upper right of each tile. Then I delete the grid layer and save the image as a bmp file. Follow the same process for the 3×3 tile image, but first re-scale the total image to be 159 x 126 and use a 3×3 rather than 4×4 grid. Once you have saved the three files in a new folder, change the puzzle_graphics_folder line in the parameters.py program to point to the new folder name.